Interfaces for Efficient Software Composition on Modern Hardware

Shoumik Palkar

Dissertation Defense

April 2, 2020

Software composition: A mainstay for decades!

The result? An ecosystem of libraries + users

Example: ML pipeline in Python

Example: ML pipeline in Python

+ Users can leverage 1000s of expertly-developed libraries across many different domains

learn NumPy I.••SlalSMOdelS

- On modern hardware, composition is **no longer a** "zero-cost" abstraction

XGBoost

Example: the function call interface

Used to pass data between functionality via pointers to in-memory values.

void vdLog(float* a, float* out, size_t n) {
for (size_t i = 0; i + 8 < n; i += 8) {
 __m256 v = _mm256_loadu_ps(a + i);
 __mm256_log2_ps(v, ...);
 ...
</pre>

Example: composition with function calls

Growing gap between memory/processing speed makes function call interface worse!

// From Black Scholes
// all inputs are vectors
d1 = price * strike
d1 = np.log2(d1) + strike

multiply log2 add

Data movement is often **dominant bottleneck** in composing existing functions

Hardware Trends are Shifting Bottlenecks

1. Kagi et al. 1996. Memory Bandwidth Limitations of Future Microprocessors. ISCA 1996

2. McCalpin. 1995. Memory Bandwidth and Machine Balance in Current High Performance Computers. TCCA 1995.

Do we need a new way to combine software?

Strawman: use a monolithic system

- "Legacy" applications: thousands of users of existing APIs
- **Example:** Community of data scientists who use optimized Python libraries
- Strawman: always use low-level languages (e.g., C++) or optimize manually
 - Optimizations [still] require lots of manual work
 - **Example:** Manual optimizations in MKL-DNN

Challenges for software composition today

Research vision: make software composition a zero-cost abstraction again!

My Research: new interfaces to compose software on modern hardware

Key idea: Use *algebraic properties* of software APIs in *new interfaces* to enable new optimizations

Examples of algebraic properties:

- F()'s loops can be fused with G()'s loops
- F()'s args can be split + pipelined with G()
- F() is parallelizable after externally splitting its args

My Approach: Three interfaces with new systems to leverage their properties

Name	Interface/Properties	System						
Weld	Focus: Data movement optimization							
Split annotations	existing library APIs							
Raw filtering	Focus: I/O optimiza	ation via data loading						

Preview: What a new interface can achieve

Black Scholes model with Intel MKL: **3-5x** speedup with Weld and SAs Querying 650GB of Censys JSON data in Spark: **4x** speedup with raw filtering

Rest of this Talk

- Weld
- Split annotations
- Raw filtering
- Impact, open source, and concluding remarks

Weld: A Common Runtime for Data Analytics

CIDR '17 PVLDB '18

Shoumik Palkar, James Thomas, Deepak Narayanan, Pratiksha Thaker, Rahul Palamuttam, Parimarjan Negi, Anil Shanbhag, Malte Schwarzkopf, Holger Pirk, Saman Amarasinghe, Samuel Madden, Matei Zaharia

Motivation for Weld

+ Ecosystem of 100s of existing libraries and APIs

- Combining these libraries is no longer efficient!

Example: Normalizing images in NumPy + classifying them in with log. reg. in TensorFlow: **13x difference** compared to an end-to-end optimized implementation

Can we enable existing APIs to compose efficiently on modern hardware?

Weld: A Common Runtime for Data Analytics

Weld: A Common Runtime for Data Analytics

Weld's Runtime API

Runtime API uses lazy evaluation

Weld's IR

Weld IR: Expressing Computations

Designed to meet three goals:

1. Generality

support diverse workloads and nested calls

- **2. Ability to express optimizations** *e.g.,* loop fusion, vectorization, and loop tiling
- 3. Explicit parallelism

Weld IR: Internals

Small "functional" IR with two main constructs. **Parallel loops:** iterate over a dataset **Builders:** declarative objects to produce results

- *E.g.,* append items to a list, compute a sum
- Different implementations on different hardware
- Read after writes: enables mutable state

Captures relational algebra, functional APIs like Spark, linear algebra, and composition thereof

Weld's Loops and Builders

Example: Functional Operators

```
def map(data, f):
    builder = new appender[T] 
    for x in data:
        merge(builder, f(x))
        result(builder)
```

Builder that — appends items to a list.

def reduce(data, zero, func):
 builder = new merger[zero, func]
 for x in data:
 merge(builder, x)
 aggregates a value.
 result(builder)

Weld's Optimizer

Optimizer Goal

Remove **redundancy** caused by composing independent libraries and functions.

Rule-based optimizations for removing redundancy in generated Weld code.

Before:

tmp = map(data, |x| x * x)
res1 = reduce(tmp, 0, +) // res1 = data.square().sum()
res2 = map(data, |x| sqrt(x))// res2 = np.sqrt(data)

Each line generated by separate function.

- Unnecessary materialization of tmp
- Two traversals of data
- Vectorization? Output size inference?

Rule-based optimizations for removing redundancy in generated Weld code.

Before:

```
tmp = map(data, |x| x * x)
res1 = reduce(tmp, 0, +)
res2 = map(data, |x| sqrt(x))
```

After:

```
bld1 = new merger[0, +]
bld2 = new appender[i32]
        (len(data))
for x: simd[i32] in data:
    merge(bld1, x * x)
    merge(bld2, sqrt(x))
```


Rule-based optimizations for removing redundancy in generated Weld code.

Before:

tmp = map(data, |x| x * x)
res1 = reduce(tmp, 0, +)
res2 = map(data, |x| sqrt(x))

After:

bld1 = new merger[0, +]
bld2 = new appender[i32]
 (len(data))
for x: simd[i32] in data:
 merge(bld1, x * x)
 merge(bld2, sqrt(x))

Example: Loop Fusion Rule to Pipeline Loops

Rule-based optimizations for removing redundancy in generated Weld code.

Before:

tmp = map(data, |x| x * x)
res1 = reduce(tmp, 0, +)
res2 = map(data, |x| sqrt(x))

After:

bld1 = new merger[0, +]
bld2 = new appender[i32]
 (len(data))
for x: simd[i32] in data:
 merge(bld1, x * x)
 merge(bld2, sqrt(x))

Example: Vectorization to leverage SIMD in CPUs

Results

Partial Integrations with Several Libraries

Libraries: NumPy, Pandas, TensorFlow, Spark SQL

Evaluated on 10 data science workloads + microbenchmarks vs. specialized systems

Weld Enables Cross-Library Optimization

Image whitening + logistic regression classification with NumPy + TensorFlow: **13x** speedup

Weld can be integrated incrementally

Benefits with incremental integration.

Weld enables high quality code generation

■ HyPer (SOTA database) ■ C++ baseline ■ Weld

SQL: Competitive with state-of-the-art and handwritten baseline (other benchmarks open source!)

Impact of Optimizations: 8 Threads

Even a sime and		F	استا	Dre	Vee	Dred	C		
Experiment	All	-ruse	-UNII	-Pre	-vec	-Prea	-urp	-AD2	-ULU
DataClean	1.00	2.44	0.97	0.99	0.98	0.95			
CrimeIndex	1.00	195	2.04	1.00	1.02	0.96			3.23
BlackSch	1.00	6.68		1.44	1.95		1.64		
Haversine	1.00	3.97		1.20	1.02				
Nbody	1.00	1.78		2.22	1.01				
BirthAn	1.00	1.02		0.97	0.98				1.00
MovieLens	1.00	1.07		1.02	0.98				1.09
LogReg	1.00	20.18		1.00					2.20
NYCFilter	1.00	9.99		1.20	1.23	2.79			
FlightDel	1.00	1.27		1.01	0.96	0.96	5.50		1.47

All optimizations enabled.

Impact of Optimizations: 8 Threads

Experiment	All	-Fuse	-Unrl	-Pre	-Vec	-Pred	-Grp	-ADS	-CLO		
DataClean	1.00	2.44	0.97	0.99	0.98	0.95					
CrimeIndex	1.00	195	2.04	1.00	1.02	0.96			3.23		
BlackSch	1.00	6.68		1.44	1.95		1.64			More	Less
Haversine	1.00	3.97		1.20	1.02					Impactful	Impactful
Nbody	1.00	1.78		2.22	1.01						inipactia
BirthAn	1.00	1.02		0.97	0.98				1.00		
MovieLens	1.00	1.07		1.02	0.98				1.09		
LogReg	1.00	20.18		1.00					2.20		
NYCFilter	1.00	9.99		1.20	1.23	2.79					
FlightDel	1.00	1.27		1.01	0.96	0.96	5.50		1.47		

Loop fusion: Pipeline loops to reduce data movement. Up to **195x** difference

Weld Prior Work

- Runtime code generation in databases
 - HyPer, LegoBase, DBLAB, Voodoo, Tupleware
 - Only target SQL or don't explicitly support parallelism
- Languages for parallel hardware
 - OpenCL, CUDA, SPIR, DryadLINQ, Spark, etc.
 - No effective cross-function optimization (even with LTO etc.)
- Monad comprehensions, Delite multiloops
 - Weld supports incremental integration, cross-library API, adaptive optimizations

My Approach: Building three systems to leverage new interface properties

Name	Interface/Properties	System
Weld	IR to extract parallel "structure" of library functions	Compiler to enable data movement optimization + parallelization
Split annotations		
Raw filtering		2

Split annotations: Optimizing Data-Intensive Computations in Existing Libraries

SOSP '19

Shoumik Palkar and Matei Zaharia

Problem with Compilers: Developer Effort

- Need to replace **every function** to use compiler intermediate representation (IR)
- IR may not even support all optimizations present in hand-optimized code

Examples

Weld needs 100s of LoC to support NumPy, Pandas

() Closed	Numba compilation error #3293 ajaychat3 opened this issue on Sep 7, 2018					
	TypingError <ipython-input-98-845f112395cc> in <m< th=""></m<></ipython-input-98-845f112395cc>					

"Sorry, our compiler doesn't recognize this pattern yet"

Tensorflow XLA makes it slower? Asked 2 years, 4 months ago Active 2 years, 4 months ago Viewed 569 times I am writing a very simple tensorflow program with XLA enabled. Bat import tensorflow as tf def ChainSoftMax(x, n) tensor = tf.nn.softmax(x) for i in range(n-1);

"Some ops are expected to be slower compared to handoptimized kernels"

Split Annotations (SAs)

Data movement optimizations and automatic parallelization on unmodified library functions

Key idea: split data to pipeline and parallelize it.

Without SAs:

Without SAs:

With SAs:


```
d1 = price * strike
d1 = np.log2(d1) + strike
```


With SAs:

Build execution graph, keep data in cache by passing cache-sized splits to functions.

With SAs:

Collectively fit in cache

Build execution graph, **keep data in cache** by passing cache-sized splits to functions.

With SAs:

Build execution graph, **keep data in cache** by passing cache-sized splits to functions.

Collectively fit in cache

With SAs:

Build execution graph, keep data in cache by passing cache-sized splits to functions.

With SAs:

Build execution graph, keep data in cache by passing cache-sized splits to functions.

Parallelize over split pieces

Example of a split annotation for MKL

Benefits compared to JIT compilers:

+ No intrusive library code changes

- + Reuses optimized library function implementations
- + Does not require access to library code

SAs can sometimes outperform compilers

MKL +Weld -MKL+SAs

Black Scholes using Intel MKL **5x speedups** by reducing data movement

Challenges in designing SAs

1. Defining how to split data and enforcing **safe** pipelining

2. Building a lazy task graph **transparently**

3. Designing a **runtime** to execute tasks in parallel

Challenges in designing SAs

1. Defining how to split data and enforcing **safe** pipelining

2. Building a lazy task graph **transparently**

3. Designing a **runtime** to execute tasks in parallel

See paper for implementation details!

How do SAs enforce <u>safe</u> pipelining?

E.g., preventing pipelining between matrix functions that iterate over row vs. over column:

Okay to pipeline – split matrix by row, pass rows to function. **Cannot pipeline** – second function reads incorrect values.

SAs use a <u>type system</u> to enforce safe pipelining

A **split type** uniquely defines how to split function arguments and return values.

@sa(n: SizeSplit(n, K), a: ArraySplit(n, K),
 b: ArraySplit(n, K), out: ArraySplit(n, K))
void vdAdd(int n, double *a, double *b, double *out)

SAs use a <u>type system</u> to enforce safe pipelining

A **split type** uniquely defines how to split function arguments and return values.

@sa(n: SizeSplit(n, K), a: ArraySplit(n, K),
 b: ArraySplit(n, K), out: ArraySplit(n, K))
void vdAdd(int n, double *a, double *b, double *out)

ArraySplit depends on function arg. n, the runtime
size of an array, and K, the number of pieces.

Same split types = values can be pipelined

An SA defines a unique "splitting" for a value using a primitive called a **split type**.

@sa(n: SizeSplit(n, K), a: ArraySplit(n, K),
 b: ArraySplit(n, K), out: ArraySplit(n, K))
void vdAdd(int n, double *a, double *b, double *out)

Same split types enforce values split in the same way: we **can pipeline** if data between functions has matching split types.

Example: Matrix Pipelining in NumPy

Split type for NumPy matrices encodes dimension + axis: MatrixSplit(Rows, Cols, Axis, K)

Split types match: axis=0
for both function calls

Split types don't match: axis=0 for first call, axis=1 for second call

How an annotator writes SAs

- Define a split type (e.g., ArraySplit, MatrixSplit)
- 2. Write a **split function** and **merge function** for the type
- 3. Annotate functions using the defined split types

Mozart: Our system implementing SAs

Mozart: Our system implementing SAs

In C++: Memory protection for lazy evaluation **In Python:** Meta-programming for lazy evaluation

See paper for details!

Mozart: Our system implementing SAs

Results

Data Types and Libraries Demonstrated

Libraries: L1 + L2 BLAS (MKL), NumPy, Pandas, spaCy, ImageMagick

Data types and operators: Arrays, Tensors, Matrices, DataFrame joins, grouping aggregations, image processing algorithms, functional operators (map, reduce, etc.)

SAs require less integration effort than compilers

]	LoC for SA	s	LoC for Weld			
Library	#Funcs	SAs	Split. API	Total	Weld IR	Glue	Total	
NumPy	84	47	37	84	321	73	394	
Pandas	15	72	49	121	1663	413	2076	
spaCy	3	8	12	20				
MKL	81	74	90	155				
ImageMagick	15	49	63	112				

SAs can match JIT compilers under existing APIs

nBody simulation: **4.6x speedup** over NumPy pandas Birth Analysis: **4.7x** $y_{it} = \beta' x_{it} + \mu_i + \epsilon_{it}$ **speedup** over pandas

SAs can accelerate highly optimized libraries

Across the 15 workloads we benchmarked:

SAs **perform within 1.2x of all compilers** in **nine** workloads

SAs **outperform all compilers** in **four** workloads

Compilers outperform SAs by >1.2x in **two** of our workloads

• Up to **6x slower:** This happens when code generation (e.g., compiling interpreted Python) matters

SAs Prior Work

- Black box code generation interface + parallelization
 - Numba, Pydron, Dask, Ray, Cilk, OpenMP
 - No pipelining/cross-function optimizations, which is focus of SAs
- Vectorization and Batch Processing
 - X100, MonetDB, Spark SQL
 - SAs enable these for arbitrary black-box libraries rather than SQL
- Automatic loop tiling and loop optimizations
 - Scala Collections, Polyhedral model in LLVM, etc.
 - Found to be ineffective over black-box functions, no pipelining

My Approach: Building three systems to leverage new interface properties

Name	Interface/Properties	System
Weld	IR to extract parallel "structure" of library functions	Compiler to enable data movement optimization + parallelization
Split annotations	Annotations to define how to partition function inputs	Runtime to pipeline data among unmodified library functions

Raw filtering: Optimizing I/O pipelines by restructuring data loading

PVLDB '18

Shoumik Palkar, Firas Abuzaid, Peter Bailis, and Matei Zaharia

Parsing: A Computational Bottleneck

Key Opportunity: High Selectivity

High selectivity especially true for **exploratory analytics**.

40% of customer Spark queries at Databricks **select < 20%** of data **99%** of queries in Censys **select < 0.001%** of data

How can we exploit high selectivity to accelerate parsing?

Sparser: Filter Before You Parse

Parse (Raw Data) Today: parse full input → slow! Sparser: Filter before parsing first using fast filtering functions with false positives, but no false negatives

Results: Accelerating End-to-End Spark Jobs

My Approach: Building three systems to leverage new interface properties

Name	Interface/Properties	System
Weld	IR to extract parallel "structure" of library functions	Compiler to enable data movement optimization + parallelization
Split annotations	Annotations to define how to partition function inputs	Runtime to pipeline data among unmodified library functions
Raw filtering	Composable filters with false positives	Library for accelerating I/O of serialized data

New composition interfaces can improve performance on modern hardware

• Weld used at NEC to support new vector accelerator, prototyped at Databricks, used in several labs

- Ongoing work at Stanford for extending SAs to bridge GPU and CPU libraries
- Teradata, Google have prototyped **raw filtering** internally

Thank you to my committee members!

Keith Winstein

Christos Kozyrakis

Mendel Rosenblum

John Duchi

Thank you Matei for an inspiring graduate career!

To FutureData, for great discussions, gossip, and friendships that I hope will last forever

Cody, Daniel, Deepti, Edward, Fiodar, Kaisheng, Keshav, Kexin, Peter Bailis, Peter Kraft, Pratiksha, Sahaana

To my office mates, for teaching me about sports, goofing off with me, and tolerating four years of terrible jokes Deepak, Firas, James

To other friends who supported me outside of lab Akshay, Aubhro, Jeff, Neil, Rohit, Stephanie, Sagar, Sahil, Yuval

> And of course, to my wife Paroma, whose unwavering support made grad school one of the fondest times of my life, and the rest of my family: my parents Anjali and Prasad, my sister Ishani, my aunt and uncle Trupti and Sourja, and my two little cousins Shreya and Tvisha, all of who were collectively responsible for keeping me smiling for the last 26 years ©

Conclusion

Thesis: We can use *algebraic properties* of software APIs in *new interfaces* to enable new optimizations

Demonstrated with three interfaces/systems:

- Weld
- Split Annotations
- Raw filtering

shoumik@cs.stanford.edu

