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Software composition: A mainstay for decades!



The result? An ecosystem of libraries + users



Example: ML pipeline in Python



Example: ML pipeline in Python

+ Users can leverage 1000s of expertly-developed 
libraries across many different domains

- On modern hardware, composition is no longer a 
“zero-cost” abstraction



Example: the function call interface

Used to pass data between functionality via pointers 
to in-memory values.

void vdLog(float* a, float* out, size_t n) {

for (size_t i = 0; i + 8 < n; i += 8) {

__m256 v = _mm256_loadu_ps(a + i);

...

_mm256_log2_ps(v, ...);

... 

(1) Pass args
through stack
(2) Load data 
from memory
(3) Process 
loaded values

Performance gap 
between these is 

growing!



Example: composition with function calls
Growing gap between memory/processing speed 
makes function call interface worse!
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// From Black Scholes
// all inputs are vectors
d1 = price * strike
d1 = np.log2(d1) + strike

multiply

log2

add

Data movement is often dominant 
bottleneck in composing existing functions 



Hardware Trends are Shifting Bottlenecks
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New hardware 
accelerators 

make this 
worse!



Do we need a new way to combine software?

• Strawman: use a monolithic system
- “Legacy" applications: thousands of users of existing APIs
- Example: Community of data scientists who use 

optimized Python libraries

• Strawman: always use low-level languages (e.g., 
C++) or optimize manually

- Optimizations [still] require lots of manual work
- Example: Manual optimizations in MKL-DNN



Challenges for software composition today

Moving data is increasingly expensive

Hardware accelerators complicate performance 
further (e.g., memory management)

Devs sacrifice programmability for performance

Research vision: make software composition a 
zero-cost abstraction again!



My Research: new interfaces to compose 
software on modern hardware

Key idea: Use algebraic properties of software APIs 
in new interfaces to enable new optimizations

Examples of algebraic properties:
• F()’s loops can be fused with G()’s loops
• F()’s args can be split +  pipelined with G()
• F() is parallelizable after externally splitting its args



My Approach: Three interfaces with new 
systems to leverage their properties

Name Interface/Properties System

Weld

Split
annotations

Raw filtering

Focus: Data movement optimization 
and automatic parallelization over 

existing library APIs

Focus: I/O optimization via data loading



Preview: What a new interface can achieve

Black Scholes model with Intel 
MKL: 3-5x speedup with Weld 

and SAs

Querying 650GB of Censys JSON 
data in Spark: 4x speedup with 

raw filtering
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Rest of this Talk

•Weld

• Split annotations

• Raw filtering

• Impact, open source, and concluding remarks



Weld: A Common 
Runtime for Data 
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Motivation for Weld
+ Ecosystem of 100s of existing libraries and APIs
- Combining these libraries is no longer efficient!

Example: Normalizing images in NumPy + classifying them in 
with log. reg. in TensorFlow: 13x difference compared to an 

end-to-end optimized implementation

Can we enable existing APIs to compose 
efficiently on modern hardware?



Weld: A Common Runtime for Data Analytics

machine 
learningSQL graph 

algorithms

CPU GPU

…

Common Runtime

…



Weld: A Common Runtime for Data Analytics

machine 
learningSQL graph 

algorithms

CPU GPU

…

…

Weld IR

Backends

Runtime API

Optimizer
Weld
runtime

Focus on data 
movement + 
parallelization



Weld’s Runtime API



Runtime API uses lazy evaluation

data = lib1.f1()
lib2.map(data,
item => lib3.f3(item))

User Application

Weld

Combined
IR program

Machine
code

11011100111
01011011110
10010101010
10101000111

IR fragments
for each function

Runtime
API

f1
map

f2

Data in 
application

Optimized
IR program

Weld
managed
parallel 
runtime
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Weld’s IR



Weld IR: Expressing Computations

Designed to meet three goals:

1. Generality
support diverse workloads and nested calls

2. Ability to express optimizations
e.g., loop fusion, vectorization, and loop tiling

3. Explicit parallelism



Weld IR: Internals

Small “functional” IR with two main constructs.
Parallel loops: iterate over a dataset
Builders: declarative objects to produce results
• E.g., append items to a list, compute a sum
• Different implementations on different hardware
• Read after writes: enables mutable state

Captures relational algebra, functional APIs like Spark, 
linear algebra, and composition thereof



def reduce(data, zero, func): 
builder = new merger[zero, func]
for x in data:

merge(builder, x)
result(builder)

Example: Functional Operators

Builder that 
aggregates a value.

Builder that 
appends items 
to a list.

def map(data, f):
builder = new appender[T]
for x in data:

merge(builder, f(x))
result(builder)

Weld’s Loops and Builders



Weld’s Optimizer



Optimizer Goal
Remove redundancy caused by composing 
independent libraries and functions.

Runtime API IR 
Fragments

Combine IR 
Program

Rule-Based 
Optimizer

Adaptive 
Optimizer

LLVM 
Codegen

Optimizer CodeGen



Removing Redundancy
Rule-based optimizations for removing redundancy in 
generated Weld code.

tmp = map(data, |x| x * x)
res1 = reduce(tmp, 0, +)     // res1 = data.square().sum()
res2 = map(data, |x| sqrt(x))// res2 = np.sqrt(data)

Before:

Each line generated by separate function.
• Unnecessary materialization of tmp
• Two traversals of data
• Vectorization? Output size inference?



Removing Redundancy
Rule-based optimizations for removing redundancy in 
generated Weld code.

tmp = map(data, |x| x * x)
res1 = reduce(tmp, 0, +)
res2 = map(data, |x| sqrt(x))

Before:
bld1 = new merger[0, +]
bld2 = new appender[i32]

(len(data))
for x: simd[i32] in data:

merge(bld1, x * x)
merge(bld2, sqrt(x))

After:



Removing Redundancy
Rule-based optimizations for removing redundancy in 
generated Weld code.

tmp = map(data, |x| x * x)
res1 = reduce(tmp, 0, +)
res2 = map(data, |x| sqrt(x))

Before:
bld1 = new merger[0, +]
bld2 = new appender[i32]

(len(data))
for x: simd[i32] in data:

merge(bld1, x * x)
merge(bld2, sqrt(x))

After:

Example: Loop Fusion Rule to Pipeline Loops



Removing Redundancy
Rule-based optimizations for removing redundancy in 
generated Weld code.

tmp = map(data, |x| x * x)
res1 = reduce(tmp, 0, +)
res2 = map(data, |x| sqrt(x))

Before:
bld1 = new merger[0, +]
bld2 = new appender[i32]

(len(data))
for x: simd[i32] in data:

merge(bld1, x * x)
merge(bld2, sqrt(x))

After:

Example: Vectorization to leverage SIMD in CPUs



Results



Partial Integrations with Several Libraries

Libraries: NumPy, Pandas, TensorFlow, Spark SQL

Evaluated on 10 data science workloads
+ microbenchmarks vs. specialized systems
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Weld Enables Cross-Library Optimization

Image whitening + logistic regression classification 
with NumPy + TensorFlow: 13x speedup
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Weld can be integrated incrementally

Benefits with incremental integration.
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Weld enables high quality code generation
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Impact of Optimizations: 8 Threads
Experiment All -Fuse -Unrl -Pre -Vec -Pred -Grp -ADS -CLO
DataClean 1.00 2.44 0.97 0.99 0.98 0.95
CrimeIndex 1.00 195 2.04 1.00 1.02 0.96 3.23
BlackSch 1.00 6.68 1.44 1.95 1.64
Haversine 1.00 3.97 1.20 1.02
Nbody 1.00 1.78 2.22 1.01
BirthAn 1.00 1.02 0.97 0.98 1.00

MovieLens 1.00 1.07 1.02 0.98 1.09
LogReg 1.00 20.18 1.00 2.20
NYCFilter 1.00 9.99 1.20 1.23 2.79
FlightDel 1.00 1.27 1.01 0.96 0.96 5.50 1.47
NYC-Sel 1.00 32.43 1.29 0.96 0.93

NYC-NoSel 1.00 6.16 1.02 1.26 1.17
Q1-Few 1.00 2.60 3.75
Q1-Many 1.00 1.13 1.12
Q3-Few 1.00 1.86 2.56
Q3-Many 1.00 1.10 0.97
Q6-Sel 1.00 1.45 1.00 1.00 0.99 0.98

Q6-NoSel 1.00 10.04 0.99 0.99 2.44 2.66

All optimizations 
enabled.

More 
Impactful

Less 
Impactful



Impact of Optimizations: 8 Threads
Experiment All -Fuse -Unrl -Pre -Vec -Pred -Grp -ADS -CLO
DataClean 1.00 2.44 0.97 0.99 0.98 0.95
CrimeIndex 1.00 195 2.04 1.00 1.02 0.96 3.23
BlackSch 1.00 6.68 1.44 1.95 1.64
Haversine 1.00 3.97 1.20 1.02
Nbody 1.00 1.78 2.22 1.01
BirthAn 1.00 1.02 0.97 0.98 1.00

MovieLens 1.00 1.07 1.02 0.98 1.09
LogReg 1.00 20.18 1.00 2.20
NYCFilter 1.00 9.99 1.20 1.23 2.79
FlightDel 1.00 1.27 1.01 0.96 0.96 5.50 1.47
NYC-Sel 1.00 32.43 1.29 0.96 0.93

NYC-NoSel 1.00 6.16 1.02 1.26 1.17
Q1-Few 1.00 2.60 3.75
Q1-Many 1.00 1.13 1.12
Q3-Few 1.00 1.86 2.56
Q3-Many 1.00 1.10 0.97
Q6-Sel 1.00 1.45 1.00 1.00 0.99 0.98

Q6-NoSel 1.00 10.04 0.99 0.99 2.44 2.66

Loop fusion: Pipeline 
loops to reduce data 
movement.
Up to 195x difference

More 
Impactful

Less 
Impactful



Weld Prior Work
• Runtime code generation in databases
• HyPer, LegoBase, DBLAB, Voodoo, Tupleware
• Only target SQL or don’t explicitly support parallelism

• Languages for parallel hardware
• OpenCL,  CUDA, SPIR, DryadLINQ, Spark, etc.
• No effective cross-function optimization (even with LTO etc.)

•Monad comprehensions, Delite multiloops
• Weld supports incremental integration, cross-library API, 

adaptive optimizations



My Approach: Building three systems to 
leverage new interface properties

Name Interface/Properties System

Weld
IR to extract parallel 
“structure” of library 
functions

Compiler to enable data 
movement optimization 
+ parallelization

Split
annotations

Raw filtering



Split annotations: Optimizing 
Data-Intensive Computations 

in Existing Libraries
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Problem with Compilers: Developer Effort

•Need to replace every function to use compiler 
intermediate representation (IR)
• IR may not even support all optimizations present 

in hand-optimized code

Examples
Weld needs 100s of LoC to support NumPy, Pandas
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“Sorry, our 
compiler doesn’t 
recognize this 
pattern yet”

“Some ops are 
expected to be slower 
compared to hand-
optimized kernels”



Split Annotations (SAs)

Data movement optimizations and automatic 
parallelization on unmodified library functions



SAs Enable Pipelining + Parallelism

Key idea: split data to pipeline and parallelize it.



SAs Enable Pipelining + Parallelism

Without SAs:

d1 = price * strike
d1 = np.log2(d1) + strike

price

strike

d1



SAs Enable Pipelining + Parallelism
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SAs Enable Pipelining + Parallelism

With SAs:

d1

price

strike

d1 = price * strike
d1 = np.log2(d1) + strike



SAs Enable Pipelining + Parallelism

With SAs:

d1

price

strike

Build 
execution 
graph, keep 
data in cache 
by passing 
cache-sized 
splits to 
functions.

d1 = price * strike
d1 = np.log2(d1) + strike



SAs Enable Pipelining + Parallelism
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d1 = price * strike
d1 = np.log2(d1) + strike
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execution 
graph, keep 
data in cache 
by passing 
cache-sized 
splits to 
functions.

Collectively fit in cache
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SAs Enable Pipelining + Parallelism

With SAs:

d1

price

strike

d1 = price * strike
d1 = np.log2(d1) + strike

Build 
execution 
graph, keep 
data in cache 
by passing 
cache-sized 
splits to 
functions.



SAs Enable Pipelining + Parallelism

With SAs:

d1

price

strike

Thread 1 Thread 2 Thread N

Parallelize over split pieces

Build 
execution 
graph, keep 
data in cache 
by passing 
cache-sized 
splits to 
functions.



Example of a split annotation for MKL

@sa(n: SizeSplit(n, K), a: ArraySplit(n, K),
b: ArraySplit(n, K), out: ArraySplit(n, K))

// Computes out[i] = a[i] + b[i] element-wise
void vdAdd(int n, double *a, double *b, double *out)

54

Benefits compared to JIT compilers:
+ No intrusive library code changes
+ Reuses optimized library function implementations
+ Does not require access to library code



SAs can sometimes outperform compilers

5x speedups by reducing 
data movement
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Challenges in designing SAs

1. Defining how to split data and enforcing safe
pipelining

2. Building a lazy task graph transparently

3. Designing a runtime to execute tasks in parallel

56



Challenges in designing SAs

1. Defining how to split data and enforcing safe
pipelining

2. Building a lazy task graph transparently

3. Designing a runtime to execute tasks in parallel

57

See paper for 
implementation details!



How do SAs enforce safe pipelining?

E.g., preventing pipelining between matrix functions 
that iterate over row vs. over column:

Okay to pipeline – split 
matrix by row,  pass 
rows to function.

Cannot pipeline –
second function reads 
incorrect values.



SAs use a type system to enforce safe pipelining

A split type uniquely defines how to split function 
arguments and return values.

@sa(n: SizeSplit(n, K), a: ArraySplit(n, K),
b: ArraySplit(n, K), out: ArraySplit(n, K))

void vdAdd(int n, double *a, double *b, double *out)

59



SAs use a type system to enforce safe pipelining

A split type uniquely defines how to split function 
arguments and return values.

@sa(n: SizeSplit(n, K), a: ArraySplit(n, K),
b: ArraySplit(n, K), out: ArraySplit(n, K))

void vdAdd(int n, double *a, double *b, double *out)
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ArraySplit depends on function arg.  n, the runtime 
size of an array, and K, the number of pieces.



Same split types = values can be pipelined

An SA defines a unique “splitting” for a value using a 
primitive called a split type.

@sa(n: SizeSplit(n, K), a: ArraySplit(n, K),
b: ArraySplit(n, K), out: ArraySplit(n, K))

void vdAdd(int n, double *a, double *b, double *out)

Same split types enforce values split in the same way: we can 
pipeline if data between functions has matching split types.
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Example: Matrix Pipelining in NumPy 

Split type for NumPy matrices encodes dimension + axis:
MatrixSplit(Rows, Cols, Axis, K)

Split types match: axis=0 
for both function calls

Split types don’t match: axis=0 
for first call, axis=1 for second call

normalize(
m, axis=0)

reduce(
m, axis=0)

normalize(
m, axis=0)

reduce(
m, axis=1)



How an annotator writes SAs

1. Define a split type (e.g., ArraySplit, 
MatrixSplit)

2. Write a split function and merge function for the 
type

3. Annotate functions using the defined split types

63



Mozart: Our system implementing SAs
User Application Annotations

Existing library

Wrapped Library

y = lib.f();
z = lib.g(y);

Mozart Runtime
Check + initialize split types, split 
data, execute functions in parallelT1 T2 T3

Mozart Client Library
Builds a lazily evaluated task graph, 
determines when to execute itf() g()



Mozart: Our system implementing SAs
User Application Annotations

Existing library

Wrapped Library

y = lib.f();
z = lib.g(y);

Mozart Runtime
Check + initialize split types, split 
data, execute functions in parallelT1 T2 T3

Mozart Client Library
Builds a lazily evaluated task graph, 
determines when to execute itf() g()

In C++: Memory protection for lazy evaluation
In Python: Meta-programming for lazy evaluation

See paper for details!



Mozart: Our system implementing SAs
User Application Annotations

Existing library

Wrapped Library

y = lib.f();
z = lib.g(y);

Mozart Runtime
Check + initialize split types, split 
data, execute functions in parallelT1 T2 T3

Mozart Client Library
Builds a lazily evaluated task graph, 
determines when to execute itf() g()



Results
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Data Types and Libraries Demonstrated
Libraries: L1 + L2 BLAS (MKL), NumPy, Pandas, spaCy, 
ImageMagick

Data types and operators: Arrays, Tensors, Matrices, 
DataFrame joins, grouping aggregations, image processing 
algorithms, functional operators (map, reduce, etc.)
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SAs require less integration effort than 
compilers

69



SAs can match JIT compilers under existing APIs
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SAs can accelerate highly optimized libraries

Shallow Water eqn:
3x speedup over MKL

Image filter: 1.8x speedup 
over ImageMagick
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Across the 15 workloads we benchmarked:

SAs perform within 1.2x of all compilers in nine
workloads

SAs outperform all compilers in four workloads

Compilers outperform SAs by >1.2x in two 
of our  workloads
• Up to 6x slower: This happens when code generation 

(e.g., compiling interpreted Python) matters
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SAs Prior Work
• Black box code generation interface + parallelization

• Numba, Pydron, Dask, Ray, Cilk, OpenMP
• No pipelining/cross-function optimizations, which is focus of SAs

• Vectorization and Batch Processing
• X100, MonetDB, Spark SQL
• SAs enable these for arbitrary black-box libraries rather than SQL

• Automatic loop tiling and loop optimizations
• Scala Collections, Polyhedral model in LLVM, etc.
• Found to be ineffective over black-box functions, no pipelining



My Approach: Building three systems to 
leverage new interface properties

Name Interface/Properties System

Weld
IR to extract parallel 
“structure” of library 
functions

Compiler to enable data 
movement optimization 
+ parallelization

Split
annotations

Annotations to define 
how to partition 
function inputs

Runtime to pipeline data 
among unmodified 
library functions



Raw filtering: Optimizing I/O 
pipelines by restructuring data 

loading

PVLDB ’18
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Matei Zaharia



Parsing: A Computational Bottleneck

Raw DataParse

Today:
parse full input à slow!



Key Opportunity: High Selectivity

High selectivity especially 
true for exploratory 
analytics.
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How can we exploit high selectivity to accelerate parsing?



Sparser: Filter Before You Parse

Raw DataFilter

Raw DataFilter

Raw DataFilter

Raw DataParse

Raw DataParse

Today:
parse full input à slow!

Sparser: Filter before parsing first 
using fast filtering functions with false 

positives, but no false negatives



Results: Accelerating End-to-End Spark Jobs
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My Approach: Building three systems to 
leverage new interface properties

Name Interface/Properties System

Weld
IR to extract parallel 
“structure” of library 
functions

Compiler to enable data 
movement optimization 
+ parallelization

Split
annotations

Annotations to define 
how to partition 
function inputs

Runtime to pipeline data 
among unmodified 
library functions

Raw filtering Composable filters with 
false positives

Library for accelerating 
I/O of serialized data



New composition interfaces can improve 
performance on modern hardware
•Weld used at NEC to support new vector accelerator, 

prototyped at Databricks, used in several labs

•Ongoing work at Stanford for extending SAs to 
bridge GPU and CPU libraries
• Teradata, Google have prototyped raw filtering 

internally
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Conclusion

Demonstrated with three interfaces/systems:
• Weld
• Split Annotations 
• Raw filtering

Thesis: We can use algebraic properties of software 
APIs in new interfaces to enable new optimizations

shoumik@cs.stanford.edu


