Interfaces for Efficient Software

Composition on Modern Hardware
Shoumik Palkar

Dissertation Defense
April 2, 2020

STANFORD

DAWN

=

Software composition:

NOTES ON STRUCTURED PROGRAMMING

by

prof.dr.Edsger W.Dijkstra

August 1969

Programming R. Morris
Techniques Editor

A mainstay for decades!

PREPARATION OF PROBLEMS FOR EDVAC-TYPE MACHINES 8-2-

On the Criteria To Be
Used in Decomposing
Systems into Modules

D.L. Parnas
Carnegie-Mellon University

This paper discusses modularization as a mechanism
for improving the flexibility and comprehensibility of a
system while allowing the shortening of its development
time. The effectiveness of a ‘‘modularization”” is
dependent upon the criteria used in dividing the system
into modules. A system design problem is presented and
both a ional and i d i
are described. It is shown that the unconventional
d have distinct ad for the goals
outlined. The criteria used in arriving at the decom-

itions are di d. The i d i
tion, if i d with the
that a module consists of one or more subroutines, will
be less efficient in most cases. An alternative approach
to implementation which does not have this effect is
sketched.

Key Words and Phrases: software, modules,
modularity, software engineering, KWIC index,
software design

CR Categories: 4.0

Introduction

A lucid of the phil hy of dul
programming can be found in a 1970 textbook on the
design of system programs by Gouthier and Pont [I,
10.23], which we quote below:'

A well-defined segmentation of the project effort ensures
system modularity. Each task forms a separate, distinct program
module. At implementation time each module and its inputs and
outputs are well-defined, there is no confusion in the intended
interface with other system modules. At checkout time the in-
tegrity of the module is tested independently; there are few sche-
duling problems in synchronizing the completion of several tasks
before checkout can begin. Finally, the system is maintained in
modular fashion; system errors and deficiencies can be traced to
specific system modules, thus limiting the scope of detailed error
searching.

Usually nothing is said about the criteria to be used
in dividing the system into modules. This paper will
discuss that issue and, by means of examples, suggest
some criteria which can be used in decomposing a
system into modules.

Joun W. Mauvchy
ELECTRONIC CONTROL COMPANY

pent on the fact that there are now a
g machines. To Professor Aiken, as
large-scale machines for quite a

res of this mecting. It shows how

carlier — “snowballing.” Interest in
Iearn of its potentialities.
explanation of the phrase “EDVA(Q

d for “Electronic Discrete Variable §

ntally from the computers now in exij
I, Mark 11, the ENIAC, and the
EDVAC-type machines are now bei
appropriate to discuss both the p
of the machines for the problems.
der some of the fundamental cha
ts which differ significantly from pre:
g on the handling of problems: (
few in number, to which the
as well as numerical quantities i
in accordance with other in. i

Structure and Interpretation of
Computer Programs

The result? An ecosystem of libraries + users

pandas a

O learn ﬁNumPy '|~\ =statsmodels
@SciPy Keras Co PYTORCH

OpenCV

W.o.. XGBoost

Example: ML pipeline in Python

pandas |l i
Yir = BTy + i + €34 I I

i~ statsmodels
O PYTORCH

OpenCV

/SQLite

]

Example: ML pipeline in Python

+ Users can leverage 1000s of expertly-developed
libraries across many different domains

- On modern hardware, composition is no longer a
“zero-cost” abstraction

Example: the function call interface

Used to pass data between functionality via pointers
to in-memory values.

(1) Pass args

void vdLog(floatx a, floatx out, size t n) { €—
through stack

for (size t 1 =0; i + 8 < n; i +=8) {

__m256 v = _mm256_loadu_ps(a + 1) ; e
Performance gap

between these is
_mm256_1log2_ps(v, ...); ¢ growing!

Example: composition with function calls

Growing gap between memory/processing speed
makes function call interface worse!

// From Black Scholes Ut
// all inputs are vectors
dl price *x strike

dl = np.log2(dl) + strike

Data movement is often dominant
bottleneck in composing existing functions

Hardware Trends are Shifting Bottlenecks

Ratio of FLOPS to words

100

loaded/sec
N) AN (@) 00
(@) (@) (@) o o

+ CPU 1960-1994 ® CPU 1995-
o
“‘New hardware s\::::o@
- accelerators e o
. make this w*«?
_ worse! Joav0e’
PY o & o o ¢ ¢ |
1960 1980 2000

2020

Do we need a new way to combine software?

- Strawman: use a monolithic system

- “Legacy" applications: thousands of users of existing APIs

- Example: Community of data scientists who use
optimized Python libraries

- Strawman: always use low-level languages (e.g.,
C++) or optimize manually
- Optimizations [still] require lots of manual work
- Example: Manual optimizations in MKL-DNN

Challenges for software composition today

Research vision: make software composition a
zero-cost abstraction again!

My Research: new interfaces to compose
software on modern hardware

Key idea: Use algebraic properties of software APIs
in new interfaces to enable new optimizations

Examples of algebraic properties:

* F()'s loops can be fused with G()’s loops

* F()'sargs can be split + pipelined with G()

- F() is parallelizable after externally splitting its args

My Approach: Three interfaces with new
systems to leverage their properties

~“Name | Interface/Properties
4 N

Weld Focus: Data movement optimization
and automatic parallelization over

Split existing library APls

annotations _ .

Raw filtering { Focus: |/O optimization via data Ioadingl

/|
:

Preview: What a new interface can achieve

B MKL OWeld BEMKL + SAs
30

N
-
|

—_—

o O

Runtime (s)

—

16 Threads

Black Scholes model with Intel
MKL: 3-5x speedup with Weld
and SAs

B Spark @ Spark+RFs

A O
o O
o O

N
o
-

Runtime (s)

Disk Q1 Q2 Q3 Q4

Querying 650GB of Censys JSON
data in Spark: 4x speedup with, -
raw filtering ~Y)

Rest of this Talk

* Weld
* Split annotations

« Raw filtering

* Impact, open source, and concluding remarks

Weld: A Common
Runtime for Data
Analytics

CIDR 17
PVLDB 18

Shoumik Palkar, James

Thomas, Deepak Narayanan,

Pratiksha Thaker, Rahdl ,
Palamuttam, Parimarjan Negi,

Anil Shanbhag, Malte”

Schwarzkopf, Holger Pirk,

Saman Amarasinghe, Samuel X
Madden, Matei Zaharia [/ R\

N ///},

Motivation for Weld

+ Ecosystem of 100s of existing libraries and APIs
— Combining these libraries is no longer efficient!

Example: Normalizing images in NumPy + classifying them in
with log. reg. in TensorFlow: 13x difference compared to an
end-to-end optimized implementation

Can we enable existing APIs to compose
efficiently on modern hardware?

Weld: A Common Runtime for Data Analytics

machine graph

>QL learning algorithms

\ /

Common Runtime

Weld: A Common Runtime for Data Analytics

machine graph
SQL learning algorithms
\ , mme API
Weld Weld IR
runtime >Optimizer
Focus on data Backends

movement +
parallelization / l \

Weld’s Runtime API

Runtime API uses lazy evaluation

User Application

data = ()
1ib2.map(data,
item => 1ib3.f3(item))

Runtime
API
O
AN
IR fragments Combined

for each function IR program

We Ld

ON

Optimized
IR program

Data in
application

11011100111
01011011110
10010101010
10101000111

Machine
code

Weld
managed
parallel
runtime

20

Weld’s IR

Weld IR: Expressing Computations

Designed to meet three goals:

1. Generality
support diverse workloads and nested calls

2. Ability to express optimizations
e.g., loop fusion, vectorization, and loop tiling

3. Explicit parallelism

Weld IR: Internals

Small “functional” IR with two main constructs.
Parallel loops: iterate over a dataset

Builders: declarative objects to produce results

- £.g., append items to a list, compute a sum
e Different implementations on different hardware
« Read after writes: enables mutable state

Captures relational algebra, functional APls like Spark,
linear algebra, and composition thereof

Weld's Loops and Builders

Example: Functional Operators

def map(data, f): Builder that
builder = new [T] — .
for x 1in data: appe.nds ems
merge (builder, f(x)) to a list.
result(builder)
def reduce(data, zero, func):
builder = new [zero, func] :
for x 1in data: - Builder that
merge(builder, x) —aggregates a value.

result(builder)

Weld's Optimizer

Optimizer Goal

Remove redundancy caused by composing
independent libraries and functions.

Optimizer CodeGen
Runtime API IR Combine IR_\ Rule-Based Adaptive LLVM
Fragments Program Optimizer Optimizer Codegen

.

. e®
4y .

Removing Redundancy

Rule-based optimizations for removing redundancy in
generated Weld code.

Before:

tmp = map(data, |x| X * Xx)
resl = reduce(tmp, 0, +) // resl = data.square().sum()
res2 = map(data, |x| sqrt(x))// res2 = np.sqrt(data)

Each line generated by separate function.
« Unnecessary materialization of tmp
« Two traversals of data

 Vectorization? Output size inference? ~19))

Removing Redundancy

Rule-based optimizations for removing redundancy in
generated Weld code.

Before: After:
tmp = map(data, |x| x * Xx) bldl = new [0, +]
resl = reduce(tmp, 0, +) bld2 = new [i32]
res2 = map(data, |x]| sqrt(x)) (len(data))

for x: [i132] in data:

merge(bldl, x *x Xx)
merge(bld2, sqrt(x))

Removing Redundancy

Rule-based optimizations for removing redundancy in
generated Weld code.

Before: After:

tmp = map(data, |x| x * Xx) bldl = new [0, +]
resl = reduce(tmp, 0, +)

res2 = map(data, |x]| sqrt(x))
for x in data:

merge(bldl, x *x x)

Example: Loop Fusion Rule to Pipeline Loops :

Removing Redundancy

Rule-based optimizations for removing redundancy in
generated Weld code.

Before: After:

tmp = map(data, |x| X * Xx)
resl = reduce(tmp, 0, +)
res2 = map(data, |x]| sqrt(x))

Example: Vectorization to leverage SIMD in CPUs

Results

Partial Integrations with Several Libraries

Libraries: NumPy, Pandas, TensorFlow, Spark SQL

'E | NumPy p andas I'Ill'll W M) r\ SﬁAaEr‘IQZ

Evaluated on 10 data science workloads
+ microbenchmarks vs. specialized systems

32

Weld Enables Cross-Library Optimization

00)
-

A O
o O

N
o

O TensorFlow ENumPy B Weld

o

Runtime (seconds)

TF + NumPy

1T

[

Weld

TF + NumPy

T

Weld

Image whitening + logistic regression classification
with NumPy + TensorFlow: 13x speedup

Weld can be integrated incrementally

@ Time spentin NumPy B Time spentin Weld
150

100
50 -
0

Runtime (seconds)

0 1 2 3 4 5 6 7 8
Operators from Black Scholes ported to Weld

Benefits with incremental integration. D)

Weld enables high quality code generation
@ HyPer (SOTA database) [OC++ baseline B Weld

L Lhh

Q12 Q14 Q19

SQL: Competltlve W|th state of—the art and handwrltten:‘\
baseline (other benchmarks open source!) (\@,

Runtime
()
(On

Normalized

Impact of Optimizations: 8 Threads

Experiment

All -Fuse -Unrl -Pre

-Vec -Pred -Grp -ADS -CLO

DataClean
Crimelndex
BlackSch
Haversine
Nbody
BirthAn
MovielLens
LogReg
NYCFilter
FlightDel

1.00 2.44 0.97 0.99
1.00 195 2.04 1.00
1.00 6.68 1.44
1.00 3.97 1.20
1.00 1.78 2.22
1.00 1.02 0.97
1.00 1.07 1.02
1.00 20.18 1.00
1.00 9.99 1.20
1.00 1.2/ 1.01

0.98 0.95

1.02 0.96 3.23

1.95 1.64

1.02

1.01

0.98 1.00

0.98 1.09
2.20

1.23 2.79

0.96 0.96 5.50 1.47

All optimizations
enabled.

More
Impactful

Less
Impactful

Impact of Optimizations: 8 Threads

Experiment| All -Fuse -Unrl -Pre -Vec -Pred -Grp -ADS -CLO
DataClean | 1.00 2.44 0.97 0.99 0.98 0.95
Crimelndex| 1.00 195 2.04 1.00 1.02 0.96 3.23
BlackSch | 1.00 6.68 1.44 1.95 1.64
Haversine | 1.00 3.97 1.20 1.02
Nbody | 1.00 1.78 2.22 1.01
BirthAn | 1.00 1.02 0.97 0.98 1.00
MovieLens | 1.00 1.07 1.02 0.98 1.09
LogReg | 1.00 20.18 1.00 2.20
NYCFilter | 1.00 9.99 1.20 1.23 2.79
FlightDel | 1.00 1.27 1.01 0.96 0.96 5.50 1.47

Loop fusion: Pipeline
loops to reduce data

movement.
Up to 195x difference

More
Impactful

Less
Impactful

Weld Prior Work

* Runtime code generation in databases
« HyPer, LegoBase, DBLAB, Voodoo, Tupleware
« Only target SQL or don't explicitly support parallelism

« Languages for parallel hardware
« OpenCL, CUDA, SPIR, DryadLINQ, Spark, etc.
» No effective cross-function optimization (even with LTO etc.)

* Monad comprehensions, Delite multiloops

« Weld supports incremental integration, cross-library API,
adaptive optimizations

My Approach: Building three systems to
leverage new interface properties

" Name | Interface/Properties

IR to extract parallel Compiler to enable data
Weld “structure” of library = movement optimization
functions + parallelization

Split
annotations

Raw filtering

Split annotations: Optimizing

SOSP’19

Data' I ntenSi\Ie ComPUtatiﬂnS Shoumik Palkar and Matei

Zaharia

in Existing Libraries

Problem with Compilers: Developer Effort

* Need to replace every function to use compiler
intermediate representation (IR)

* IR may not even support all optimizations present
in hand-optimized code

Examples
Weld needs 100s of LoC to support NumPy, Pandas

@& Closed Numba compilation error #3293
' ajaychat3 opened this issue on Sep 7, 2018 - 2

TypingError
<ipython-input-98-845f112395cc> in <m

20 naram nridi1=1I1

Tensorflow XLA makes it slower?

Asked 2 years, 4 months ago Active 2 years, 4 months ago Viewed 569 times

| am writing a very simple tensorflow program with XLA enabled. B:

1 import tensorflow as tf

def ChainSoftMax(x, n)
tensor = tf.nn.softmax(x)

for i in ranae(n-1):

“Sorry, our
compiler doesn’t
recognize this
pattern yet”

“Some ops are
expected to be slower
compared to hand-
optimized kernels”

Split Annotations (SAs)

Data movement optimizations and automatic
parallelization on unmodified library functions

SAs Enable Pipelining + Parallelism

Key idea: split data to pipeline and parallelize it.

SAs Enable Pipelining + Parallelism

Without SAs:

dl
price

strike

price x strike -
np.log2(dl) + strike

dl
dl

]

SAs Enable Pipelining + Parallelism

Without SAs:

dl
price

strike

dl
dl

price % strike
np.log2(dl) + strike <«

]

SAs Enable Pipelining + Parallelism

With SAs:

dl
dl

price % strike
np.log2(dl) + strike

]

SAs Enable Pipelining + Parallelism

With SAs: Build
graph, keep
. L[pricc datain cache
cache-sized
splits to
functions.

dl
dl

price % strike
np. log2(dl) + strike Eﬂ
§>>>

SAs Enable Pipelining + Parallelism

With SAs: BUild
graph, keep
BN [erice datain cache
cache-sized
Collectively fit in cache splits to

functions.
dl = price x strike -
dl = np.log2(dl) + strike < >>
)

SAs Enable Pipelining + Parallelism

With SAs: BUild
graph, keep
. L |[L rice datain cache
I [] strike Y Becce
cache-sized
Collectively fit in cache splits to
functions.
dl

dl

price x strike
np.log2(dl) + strike <G ﬁ>>
)

SAs Enable Pipelining + Parallelism

With SAs: Build
graph, keep
. BN erice datain cache
cache-sized
splits to
functions.

dl
dl

price x strike
np.log2(dl) + strike [ﬂ
@)}

SAs Enable Pipelining + Parallelism

With SAs: Build
graph, keep
. L [erice datain cache
cache-sized
splits to
functions.

dl
dl

price x strike
np.log2(dl) + strike [ﬂ
@)}

SAs Enable Pipelining + Parallelism

With SAs: Build
graph, keep

D R I erice datain cache
cache-sized

Thread 1 Thread 2 Thread N splits to
functions.

Parallelize over split pieces

Example of a split annotation for MKL

@sa(n: SizeSplit(n, K), a: ArraySplit(n, K),

b: ArraySplit(n, K), out: ArraySplit(n, K))

// Computes out[i] = alil + b[i] element-wise
void vdAdd(int n, double *a, double xb, double *xout)

Benefits compared to JIT compilers:

-+
-+
-+

No intrusive library code changes
Reuses optimized library function implementations

Does not require access to library code

54 N 7/

SAs can sometimes outperform compilers

+MKL +Weld +=MKL+SAs

100 £
= 0 L ~—|_ | Black Scholes using Intel MKL
e E 5x speedups by reducing
e data movement
1
4 16

Threads 153

Challenges in designing SAs

1. Defining how to split data and enforcing safe
pipelining

2. Building a lazy task graph transparently

3. Designing a runtime to execute tasks in parallel

Challenges in designing SAs

1. Defining how to split data and enforcing safe
pipelining

See paper for
implementation details!

How do SAs enforce safe pipelining?

E.g., preventing pipelining between matrix functions
that iterate over row vs. over column:

- split Cannot pipeline -
matrix by row, pass second function reads
rows to function. incorrect values.

SAs use a type system to enforce safe pipelining

A split type uniquely defines how to split function
arguments and return values.

@sa(n: SizeSplit(n, K), a: ArraySplit(n, K),
b: ArraySplit(n, K), out: ArraySplit(n, K))
void vdAdd(int n, double *a, double *b, double *xout)

59

SAs use a type system to enforce safe pipelining

A split type uniquely defines how to split function
arguments and return values.

@sa(n: SizeSplit(n, K), a: ArraySplit(n, K),
b: ArraySplit(n, K), out: ArraySplit(n, K))
void vdAdd(int n, double *a, double *b, double *xout)

ArraySplit depends on function arg. n, the runtime
size of an array, and K, the number of pieces.

60

Same split types = values can be pipelined

An SA defines a unique “splitting” for a value using a
primitive called a split type.

@sa(n: SizeSplit(n, K), a: ArraySplit(n, K),
b: ArraySplit(n, 7 out:_ArraySplit(n, K))
void vdAdd(int ouble *b, double *xout)

Same split types enforce values split in the same way: we can
pipeline if data between functions has matching split types.

Example: Matrix Pipelining in NumPy

Split type for NumPy matrices encodes dimension + axis:
MatrixSplit(Rows, Cols, Axis, K)

normalize reduce (normalize reduce (
m, axis=0) m, axis=0) m, axis=0) m, axis=1)
ax1s=0 Split types don’t match: ax1s=0

for both function calls for first call, axis=1 for second call -

How an annotator writes SAs

1. Define a split type (e.g., ArraySplit,
MatrixSplit)

2. Write a split function and merge function for the
type

3. Annotate functions using the defined split types

Mozart: Our system implementing SAs

User Application Annotations
y = lib.f();
z = lib.g(y); Existing library

Wrapped Library

s =

‘ ‘ Mozart Client Library

Builds a lazily evaluated task graph,
() g() determines when to execute it

Mozart Runtime
: I : Check + initialize split types, split

T1 T2 T3 data, execute functions in parallel

Mozart: Our system implementing SAs

In C++: Memory protection for lazy evaluation
In Python: Meta-programming for lazy evaluation

See paper for details!

‘ ‘ Mozart Client Library

Builds a lazily evaluated task graph,
() g() determines when to execute it

Mozart: Our system implementing SAs

o Mozart Runtime
® Check + initialize split types, split
T3 data, execute functions in parallel

?
®
T1 12

Results

Data Types and Libraries Demonstrated

Libraries: L1 + L2 BLAS (MKL), NumPy, Pandas, spaCy,
ImageMagick

spaCy (i@

Data types and operators: Arrays, Tensors, Matrices,
DataFrame joins, grouping aggregations, image processing
algorithms, functional operators (map, reduce, etc.)

68

SAs require less integration effort than
compilers

LoC for SAs LoC for Weld
Library #Funcs Total Total
NumP 84 84 394
Pandas 15 121 2076
spaCy 3 20
MKL 81 155
ImageMagick 15 112

SAs can match JIT compilers under existing APIs

-©-NumPy Bohrium -®-Pandas -«=Weld ##-Pandas+SAs
-+Weld -0-Numba
#-NumPy+SAs 100
"
v o
@ -
£ 100 =
S &
&
10 10
1 4 16 1 4 16

Threads
Threads

nBody simulation: 4.6x pandas Birth Analysis: 4.7x
speedup over NumPy s Speedup over pa ndag

oy

SAs can accelerate highly optimized libraries

-°-MKL MKL+SAs -0-ImageMagick #-ImageMagick+SAs
1000 ¢ 1000 ¢
wn L A -
— 100 —mf—— ~ 100 P —
Q = =
;::2 10 & D% 10 L
1 | 1
1 4 16 1 4 16
Threads Threads

2

i/nteD@ Shallow Water eqn: %, & Image filter: 1.8x speedup
b 3x speedup over MKL ‘ over ImageMagick 159

Across the 15 workloads we benchmarked:

SAs perform within 1.2x of all compilers in nine
workloads

SAs outperform all compilers in four workloads

Compilers outperform SAs by >1.2x in two

of our workloads

« Up to 6x slower: This happens when code generation
(e.g., compiling interpreted Python) matters

72

SAs Prior Work

 Black box code generation interface + parallelization
« Numba, Pydron, Dask, Ray, Cilk, OpenMP
* No pipelining/cross-function optimizations, which is focus of SAs

» Vectorization and Batch Processing
« X100, MonetDB, Spark SQL
« SAs enable these for arbitrary black-box libraries rather than SQL

« Automatic loop tiling and loop optimizations
« Scala Collections, Polyhedral model in LLVM, etc.
« Found to be ineffective over black-box functions, no pipelining

My Approach: Building three systems to
leverage new interface properties

" Name | Interface/Properties

IR to extract parallel Compiler to enable data
Weld “structure” of library = movement optimization
functions + parallelization
: Annotations to define Runtime to pipeline data
Split .. e
how to partition among unmodified

annotations o .. tion inputs library functions

Raw filtering: Optimizing 1/0
pipelines by restructuring data
loading

PVLDB 18

Shoumik Palkar, Firas
Abuzaid, Peter Bailis, and

Matei Zaharia

Parsing: A Computational Bottleneck

Parse[A Raw Data }

Today:
parse full input > slow!

Key Opportunity: High Selectivity

-e-- Databricks Censys
1
| o . 0.8
High selectivity especially 06
true for exploratory 7
analytics. S
’,o-"' 4 0.2
=== = 77T - 0
1.E-09 1.E-05 1.E-01
Selectivity

40% of customer Spark queries at Databricks select < 20% of data

99% of queries in Censys select < 0.001% of data

CDF

How can we exploit high selectivity to accelerate parsing?

Sparser: Filter Before You Parse

Sparser: Filter before parsing first
using fast filtering functions with false
positives, but no false negatives

Parse[R Raw Data } Filter [Raw Data }
Filter { Raw Data J
Today:
parse full input > slow! Filter(Raw Data }

Parse{ Raw Data J -

Results: Accelerating End-to-End Spark Jobs

N b~ O
o O O
o O O

o

Runtime (seconds)

B Spark +Jackson [Spark + Sparser 1 Query Only

) |H ‘H |H ‘H |n |Hﬁ |H |H |H

Disk Q1 Q2 Q3 Q4 Q5 Q6 Q/ Q8 Q9

Censys queries on 652GB of JSON data: up to 4x

speedup by using Sparser. 159

My Approach: Building three systems to
leverage new interface properties

" Name | Interface/Properties

IR to extract parallel Compiler to enable data
Weld “structure” of library = movement optimization
functions + parallelization
Split Annotations to define Runtime to pipeline data
P : how to partition among unmodified
annotations . . : :
function inputs library functions

Composable filters with Library for accelerating

false positives /O of serialized data)

New composition interfaces can improve
performance on modern hardware

* Weld used at NEC to support new vector accelerator,
prototyped at Databricks, used in several labs

o

° N
NEC Wi¥ s@databricks

« Ongoing work at Stanford for extending SAs to
bridge GPU and CPU libraries

» Teradata, Google have prototyped raw filtering
internally

Acknowledgements

Acknowledgements

Thank you to my committee members!

Keith Christos Mendel John
Winstein Kozyrakis Rosenblum Duchi

Acknowledgements

Thank you Matei for an
inspiring graduate career!

Acknowledgements

To FutureData, for great discussions, gossip, and friendships that | hope will
last forever

Cod}t/, Danjel, Deepti, Edward, Fiodar, Kaisheng, Keshav, Kexin, Peter Bailis, Peter
Kraft, Pratiksha, Sahaana

To my office mates, for teaching me about sports, goofing off with me, and
tolerating four years of terrible jokes

Deepak, Firas, James

To other friends who supported me outside of lab
Akshay, Aubhro, Jeff, Neil, Rohit, Stephanie, Sagar, Sahil, Yuval

4 And of course, to my wife Paroma, whose unwavering support made grad A

school one of the fondest times of my life, and the rest of my family: my

parents Anjali and Prasad, my sister Ishani, my aunt and uncle Trupti and
Sourja, and my two little cousins Shreya and Tvisha, all of who were

_ collectively responsible for keeping me smiling for the last 26 years ©)

Conclusion

Thesis: We can use algebraic properties of software
APIs in new interfaces to enable new optimizations

Demonstrated with three interfaces/systems:
- Weld
 Split Annotations
* Raw filtering DAWN

shoumik@cs.stanford.edu a \

