
Interfaces for Efficient Software
Composition on Modern Hardware

Shoumik Palkar
Dissertation Defense

April 2, 2020

Software composition: A mainstay for decades!

The result? An ecosystem of libraries + users

Example: ML pipeline in Python

Example: ML pipeline in Python

+ Users can leverage 1000s of expertly-developed
libraries across many different domains

- On modern hardware, composition is no longer a
“zero-cost” abstraction

Example: the function call interface

Used to pass data between functionality via pointers
to in-memory values.

void vdLog(float* a, float* out, size_t n) {

for (size_t i = 0; i + 8 < n; i += 8) {

__m256 v = _mm256_loadu_ps(a + i);

...

_mm256_log2_ps(v, ...);

...

(1) Pass args
through stack
(2) Load data
from memory
(3) Process
loaded values

Performance gap
between these is

growing!

Example: composition with function calls
Growing gap between memory/processing speed
makes function call interface worse!

7

// From Black Scholes
// all inputs are vectors
d1 = price * strike
d1 = np.log2(d1) + strike

multiply

log2

add

Data movement is often dominant
bottleneck in composing existing functions

Hardware Trends are Shifting Bottlenecks

0

20

40

60

80

100

1960 1980 2000 2020Ra
tio

 o
f F

LO
PS

 to
 w

or
ds

lo

ad
ed

/s
ec

Year

CPU 1960-1994 CPU 1995- GPU

Memory becomes slower

relative to compute

1. Kagi et al. 1996. Memory Bandwidth Limitations of Future Microprocessors. ISCA 1996
2. McCalpin. 1995. Memory Bandwidth and Machine Balance in Current High Performance Computers. TCCA 1995.

New hardware
accelerators

make this
worse!

Do we need a new way to combine software?

• Strawman: use a monolithic system
- “Legacy" applications: thousands of users of existing APIs
- Example: Community of data scientists who use

optimized Python libraries

• Strawman: always use low-level languages (e.g.,
C++) or optimize manually

- Optimizations [still] require lots of manual work
- Example: Manual optimizations in MKL-DNN

Challenges for software composition today

Moving data is increasingly expensive

Hardware accelerators complicate performance
further (e.g., memory management)

Devs sacrifice programmability for performance

Research vision: make software composition a
zero-cost abstraction again!

My Research: new interfaces to compose
software on modern hardware

Key idea: Use algebraic properties of software APIs
in new interfaces to enable new optimizations

Examples of algebraic properties:
• F()’s loops can be fused with G()’s loops
• F()’s args can be split + pipelined with G()
• F() is parallelizable after externally splitting its args

My Approach: Three interfaces with new
systems to leverage their properties

Name Interface/Properties System

Weld

Split
annotations

Raw filtering

Focus: Data movement optimization
and automatic parallelization over

existing library APIs

Focus: I/O optimization via data loading

Preview: What a new interface can achieve

Black Scholes model with Intel
MKL: 3-5x speedup with Weld

and SAs

Querying 650GB of Censys JSON
data in Spark: 4x speedup with

raw filtering

0

200

400

600

Disk Q1 Q2 Q3 Q4

Ru
nt

im
e

(s
)

Spark Spark+RFs

0

10

20

30

16 Threads

Ru
nt

im
e

(s
)

MKL Weld MKL + SAs

Rest of this Talk

•Weld

• Split annotations

• Raw filtering

• Impact, open source, and concluding remarks

Weld: A Common
Runtime for Data

Analytics

CIDR ’17
PVLDB ’18
Shoumik Palkar, James
Thomas, Deepak Narayanan,
Pratiksha Thaker, Rahul
Palamuttam, Parimarjan Negi,
Anil Shanbhag, Malte
Schwarzkopf, Holger Pirk,
Saman Amarasinghe, Samuel
Madden, Matei Zaharia

Motivation for Weld
+ Ecosystem of 100s of existing libraries and APIs
- Combining these libraries is no longer efficient!

Example: Normalizing images in NumPy + classifying them in
with log. reg. in TensorFlow: 13x difference compared to an

end-to-end optimized implementation

Can we enable existing APIs to compose
efficiently on modern hardware?

Weld: A Common Runtime for Data Analytics

machine
learningSQL graph

algorithms

CPU GPU

…

Common Runtime

…

Weld: A Common Runtime for Data Analytics

machine
learningSQL graph

algorithms

CPU GPU

…

…

Weld IR

Backends

Runtime API

Optimizer
Weld
runtime

Focus on data
movement +
parallelization

Weld’s Runtime API

Runtime API uses lazy evaluation

data = lib1.f1()
lib2.map(data,
item => lib3.f3(item))

User Application

Weld

Combined
IR program

Machine
code

11011100111
01011011110
10010101010
10101000111

IR fragments
for each function

Runtime
API

f1
map

f2

Data in
application

Optimized
IR program

Weld
managed
parallel
runtime

20

Weld’s IR

Weld IR: Expressing Computations

Designed to meet three goals:

1. Generality
support diverse workloads and nested calls

2. Ability to express optimizations
e.g., loop fusion, vectorization, and loop tiling

3. Explicit parallelism

Weld IR: Internals

Small “functional” IR with two main constructs.
Parallel loops: iterate over a dataset
Builders: declarative objects to produce results
• E.g., append items to a list, compute a sum
• Different implementations on different hardware
• Read after writes: enables mutable state

Captures relational algebra, functional APIs like Spark,
linear algebra, and composition thereof

def reduce(data, zero, func):
builder = new merger[zero, func]
for x in data:

merge(builder, x)
result(builder)

Example: Functional Operators

Builder that
aggregates a value.

Builder that
appends items
to a list.

def map(data, f):
builder = new appender[T]
for x in data:

merge(builder, f(x))
result(builder)

Weld’s Loops and Builders

Weld’s Optimizer

Optimizer Goal
Remove redundancy caused by composing
independent libraries and functions.

Runtime API IR
Fragments

Combine IR
Program

Rule-Based
Optimizer

Adaptive
Optimizer

LLVM
Codegen

Optimizer CodeGen

Removing Redundancy
Rule-based optimizations for removing redundancy in
generated Weld code.

tmp = map(data, |x| x * x)
res1 = reduce(tmp, 0, +) // res1 = data.square().sum()
res2 = map(data, |x| sqrt(x))// res2 = np.sqrt(data)

Before:

Each line generated by separate function.
• Unnecessary materialization of tmp
• Two traversals of data
• Vectorization? Output size inference?

Removing Redundancy
Rule-based optimizations for removing redundancy in
generated Weld code.

tmp = map(data, |x| x * x)
res1 = reduce(tmp, 0, +)
res2 = map(data, |x| sqrt(x))

Before:
bld1 = new merger[0, +]
bld2 = new appender[i32]

(len(data))
for x: simd[i32] in data:

merge(bld1, x * x)
merge(bld2, sqrt(x))

After:

Removing Redundancy
Rule-based optimizations for removing redundancy in
generated Weld code.

tmp = map(data, |x| x * x)
res1 = reduce(tmp, 0, +)
res2 = map(data, |x| sqrt(x))

Before:
bld1 = new merger[0, +]
bld2 = new appender[i32]

(len(data))
for x: simd[i32] in data:

merge(bld1, x * x)
merge(bld2, sqrt(x))

After:

Example: Loop Fusion Rule to Pipeline Loops

Removing Redundancy
Rule-based optimizations for removing redundancy in
generated Weld code.

tmp = map(data, |x| x * x)
res1 = reduce(tmp, 0, +)
res2 = map(data, |x| sqrt(x))

Before:
bld1 = new merger[0, +]
bld2 = new appender[i32]

(len(data))
for x: simd[i32] in data:

merge(bld1, x * x)
merge(bld2, sqrt(x))

After:

Example: Vectorization to leverage SIMD in CPUs

Results

Partial Integrations with Several Libraries

Libraries: NumPy, Pandas, TensorFlow, Spark SQL

Evaluated on 10 data science workloads
+ microbenchmarks vs. specialized systems

32

Weld Enables Cross-Library Optimization

Image whitening + logistic regression classification
with NumPy + TensorFlow: 13x speedup

0

20

40

60

80

TF + NumPy Weld TF + NumPy Weld

1T 8T

Ru
nt

im
e

(s
ec

on
ds

)
TensorFlow NumPy Weld

Weld can be integrated incrementally

Benefits with incremental integration.

0

50

100

150

0 1 2 3 4 5 6 7 8Ru
nt

im
e

(s
ec

on
ds

)

Operators from Black Scholes ported to Weld

Time spent in NumPy Time spent in Weld

Weld enables high quality code generation

0

0.5

1

Q1 Q3 Q6 Q12 Q14 Q19

N
or

m
al

iz
ed

Ru

nt
im

e
HyPer (SOTA database) C++ baseline Weld

SQL: Competitive with state-of-the-art and handwritten
baseline (other benchmarks open source!)

Impact of Optimizations: 8 Threads
Experiment All -Fuse -Unrl -Pre -Vec -Pred -Grp -ADS -CLO
DataClean 1.00 2.44 0.97 0.99 0.98 0.95
CrimeIndex 1.00 195 2.04 1.00 1.02 0.96 3.23
BlackSch 1.00 6.68 1.44 1.95 1.64
Haversine 1.00 3.97 1.20 1.02
Nbody 1.00 1.78 2.22 1.01
BirthAn 1.00 1.02 0.97 0.98 1.00

MovieLens 1.00 1.07 1.02 0.98 1.09
LogReg 1.00 20.18 1.00 2.20
NYCFilter 1.00 9.99 1.20 1.23 2.79
FlightDel 1.00 1.27 1.01 0.96 0.96 5.50 1.47
NYC-Sel 1.00 32.43 1.29 0.96 0.93

NYC-NoSel 1.00 6.16 1.02 1.26 1.17
Q1-Few 1.00 2.60 3.75
Q1-Many 1.00 1.13 1.12
Q3-Few 1.00 1.86 2.56
Q3-Many 1.00 1.10 0.97
Q6-Sel 1.00 1.45 1.00 1.00 0.99 0.98

Q6-NoSel 1.00 10.04 0.99 0.99 2.44 2.66

All optimizations
enabled.

More
Impactful

Less
Impactful

Impact of Optimizations: 8 Threads
Experiment All -Fuse -Unrl -Pre -Vec -Pred -Grp -ADS -CLO
DataClean 1.00 2.44 0.97 0.99 0.98 0.95
CrimeIndex 1.00 195 2.04 1.00 1.02 0.96 3.23
BlackSch 1.00 6.68 1.44 1.95 1.64
Haversine 1.00 3.97 1.20 1.02
Nbody 1.00 1.78 2.22 1.01
BirthAn 1.00 1.02 0.97 0.98 1.00

MovieLens 1.00 1.07 1.02 0.98 1.09
LogReg 1.00 20.18 1.00 2.20
NYCFilter 1.00 9.99 1.20 1.23 2.79
FlightDel 1.00 1.27 1.01 0.96 0.96 5.50 1.47
NYC-Sel 1.00 32.43 1.29 0.96 0.93

NYC-NoSel 1.00 6.16 1.02 1.26 1.17
Q1-Few 1.00 2.60 3.75
Q1-Many 1.00 1.13 1.12
Q3-Few 1.00 1.86 2.56
Q3-Many 1.00 1.10 0.97
Q6-Sel 1.00 1.45 1.00 1.00 0.99 0.98

Q6-NoSel 1.00 10.04 0.99 0.99 2.44 2.66

Loop fusion: Pipeline
loops to reduce data
movement.
Up to 195x difference

More
Impactful

Less
Impactful

Weld Prior Work
• Runtime code generation in databases
• HyPer, LegoBase, DBLAB, Voodoo, Tupleware
• Only target SQL or don’t explicitly support parallelism

• Languages for parallel hardware
• OpenCL, CUDA, SPIR, DryadLINQ, Spark, etc.
• No effective cross-function optimization (even with LTO etc.)

•Monad comprehensions, Delite multiloops
• Weld supports incremental integration, cross-library API,

adaptive optimizations

My Approach: Building three systems to
leverage new interface properties

Name Interface/Properties System

Weld
IR to extract parallel
“structure” of library
functions

Compiler to enable data
movement optimization
+ parallelization

Split
annotations

Raw filtering

Split annotations: Optimizing
Data-Intensive Computations

in Existing Libraries

SOSP ’19
Shoumik Palkar and Matei
Zaharia

Problem with Compilers: Developer Effort

•Need to replace every function to use compiler
intermediate representation (IR)
• IR may not even support all optimizations present

in hand-optimized code

Examples
Weld needs 100s of LoC to support NumPy, Pandas

42

“Sorry, our
compiler doesn’t
recognize this
pattern yet”

“Some ops are
expected to be slower
compared to hand-
optimized kernels”

Split Annotations (SAs)

Data movement optimizations and automatic
parallelization on unmodified library functions

SAs Enable Pipelining + Parallelism

Key idea: split data to pipeline and parallelize it.

SAs Enable Pipelining + Parallelism

Without SAs:

d1 = price * strike
d1 = np.log2(d1) + strike

price

strike

d1

SAs Enable Pipelining + Parallelism

Without SAs:

d1 = price * strike
d1 = np.log2(d1) + strike

price

strike

d1

SAs Enable Pipelining + Parallelism

With SAs:

d1

price

strike

d1 = price * strike
d1 = np.log2(d1) + strike

SAs Enable Pipelining + Parallelism

With SAs:

d1

price

strike

Build
execution
graph, keep
data in cache
by passing
cache-sized
splits to
functions.

d1 = price * strike
d1 = np.log2(d1) + strike

SAs Enable Pipelining + Parallelism

With SAs:

d1

price

strike

d1 = price * strike
d1 = np.log2(d1) + strike

Build
execution
graph, keep
data in cache
by passing
cache-sized
splits to
functions.

Collectively fit in cache

SAs Enable Pipelining + Parallelism

With SAs:

d1

price

strike

d1 = price * strike
d1 = np.log2(d1) + strike

Build
execution
graph, keep
data in cache
by passing
cache-sized
splits to
functions.

Collectively fit in cache

SAs Enable Pipelining + Parallelism

With SAs:

d1

price

strike

d1 = price * strike
d1 = np.log2(d1) + strike

Build
execution
graph, keep
data in cache
by passing
cache-sized
splits to
functions.

SAs Enable Pipelining + Parallelism

With SAs:

d1

price

strike

d1 = price * strike
d1 = np.log2(d1) + strike

Build
execution
graph, keep
data in cache
by passing
cache-sized
splits to
functions.

SAs Enable Pipelining + Parallelism

With SAs:

d1

price

strike

Thread 1 Thread 2 Thread N

Parallelize over split pieces

Build
execution
graph, keep
data in cache
by passing
cache-sized
splits to
functions.

Example of a split annotation for MKL

@sa(n: SizeSplit(n, K), a: ArraySplit(n, K),
b: ArraySplit(n, K), out: ArraySplit(n, K))

// Computes out[i] = a[i] + b[i] element-wise
void vdAdd(int n, double *a, double *b, double *out)

54

Benefits compared to JIT compilers:
+ No intrusive library code changes
+ Reuses optimized library function implementations
+ Does not require access to library code

SAs can sometimes outperform compilers

5x speedups by reducing
data movement

1

10

100

1 4 16

Ru
nt

im
e

(s
)

Threads

MKL Weld MKL+SAs

Black Scholes using Intel MKL

Challenges in designing SAs

1. Defining how to split data and enforcing safe
pipelining

2. Building a lazy task graph transparently

3. Designing a runtime to execute tasks in parallel

56

Challenges in designing SAs

1. Defining how to split data and enforcing safe
pipelining

2. Building a lazy task graph transparently

3. Designing a runtime to execute tasks in parallel

57

See paper for
implementation details!

How do SAs enforce safe pipelining?

E.g., preventing pipelining between matrix functions
that iterate over row vs. over column:

Okay to pipeline – split
matrix by row, pass
rows to function.

Cannot pipeline –
second function reads
incorrect values.

SAs use a type system to enforce safe pipelining

A split type uniquely defines how to split function
arguments and return values.

@sa(n: SizeSplit(n, K), a: ArraySplit(n, K),
b: ArraySplit(n, K), out: ArraySplit(n, K))

void vdAdd(int n, double *a, double *b, double *out)

59

SAs use a type system to enforce safe pipelining

A split type uniquely defines how to split function
arguments and return values.

@sa(n: SizeSplit(n, K), a: ArraySplit(n, K),
b: ArraySplit(n, K), out: ArraySplit(n, K))

void vdAdd(int n, double *a, double *b, double *out)

60

ArraySplit depends on function arg. n, the runtime
size of an array, and K, the number of pieces.

Same split types = values can be pipelined

An SA defines a unique “splitting” for a value using a
primitive called a split type.

@sa(n: SizeSplit(n, K), a: ArraySplit(n, K),
b: ArraySplit(n, K), out: ArraySplit(n, K))

void vdAdd(int n, double *a, double *b, double *out)

Same split types enforce values split in the same way: we can
pipeline if data between functions has matching split types.

61

Example: Matrix Pipelining in NumPy

Split type for NumPy matrices encodes dimension + axis:
MatrixSplit(Rows, Cols, Axis, K)

Split types match: axis=0
for both function calls

Split types don’t match: axis=0
for first call, axis=1 for second call

normalize(
m, axis=0)

reduce(
m, axis=0)

normalize(
m, axis=0)

reduce(
m, axis=1)

How an annotator writes SAs

1. Define a split type (e.g., ArraySplit,
MatrixSplit)

2. Write a split function and merge function for the
type

3. Annotate functions using the defined split types

63

Mozart: Our system implementing SAs
User Application Annotations

Existing library

Wrapped Library

y = lib.f();
z = lib.g(y);

Mozart Runtime
Check + initialize split types, split
data, execute functions in parallelT1 T2 T3

Mozart Client Library
Builds a lazily evaluated task graph,
determines when to execute itf() g()

Mozart: Our system implementing SAs
User Application Annotations

Existing library

Wrapped Library

y = lib.f();
z = lib.g(y);

Mozart Runtime
Check + initialize split types, split
data, execute functions in parallelT1 T2 T3

Mozart Client Library
Builds a lazily evaluated task graph,
determines when to execute itf() g()

In C++: Memory protection for lazy evaluation
In Python: Meta-programming for lazy evaluation

See paper for details!

Mozart: Our system implementing SAs
User Application Annotations

Existing library

Wrapped Library

y = lib.f();
z = lib.g(y);

Mozart Runtime
Check + initialize split types, split
data, execute functions in parallelT1 T2 T3

Mozart Client Library
Builds a lazily evaluated task graph,
determines when to execute itf() g()

Results

67

Data Types and Libraries Demonstrated
Libraries: L1 + L2 BLAS (MKL), NumPy, Pandas, spaCy,
ImageMagick

Data types and operators: Arrays, Tensors, Matrices,
DataFrame joins, grouping aggregations, image processing
algorithms, functional operators (map, reduce, etc.)

68

SAs require less integration effort than
compilers

69

SAs can match JIT compilers under existing APIs

10

100

1 4 16

Ru
nt

im
e

(s
)

Threads

NumPy Bohrium
Weld Numba
NumPy+SAs

nBody simulation: 4.6x
speedup over NumPy

10

100

1 4 16

Ru
nt

im
e

(s
)

Threads

Pandas Weld Pandas+SAs

Birth Analysis: 4.7x
speedup over pandas

SAs can accelerate highly optimized libraries

Shallow Water eqn:
3x speedup over MKL

Image filter: 1.8x speedup
over ImageMagick

1

10

100

1000

1 4 16

Ru
nt

im
e

(s
)

Threads

ImageMagick ImageMagick+SAs

1

10

100

1000

1 4 16

Ru
nt

im
e

(s
)

Threads

MKL MKL+SAs

Across the 15 workloads we benchmarked:

SAs perform within 1.2x of all compilers in nine
workloads

SAs outperform all compilers in four workloads

Compilers outperform SAs by >1.2x in two
of our workloads
• Up to 6x slower: This happens when code generation

(e.g., compiling interpreted Python) matters

72

SAs Prior Work
• Black box code generation interface + parallelization

• Numba, Pydron, Dask, Ray, Cilk, OpenMP
• No pipelining/cross-function optimizations, which is focus of SAs

• Vectorization and Batch Processing
• X100, MonetDB, Spark SQL
• SAs enable these for arbitrary black-box libraries rather than SQL

• Automatic loop tiling and loop optimizations
• Scala Collections, Polyhedral model in LLVM, etc.
• Found to be ineffective over black-box functions, no pipelining

My Approach: Building three systems to
leverage new interface properties

Name Interface/Properties System

Weld
IR to extract parallel
“structure” of library
functions

Compiler to enable data
movement optimization
+ parallelization

Split
annotations

Annotations to define
how to partition
function inputs

Runtime to pipeline data
among unmodified
library functions

Raw filtering: Optimizing I/O
pipelines by restructuring data

loading

PVLDB ’18
Shoumik Palkar, Firas
Abuzaid, Peter Bailis, and
Matei Zaharia

Parsing: A Computational Bottleneck

Raw DataParse

Today:
parse full input à slow!

Key Opportunity: High Selectivity

High selectivity especially
true for exploratory
analytics.

0

0.2

0.4

0.6

0.8

1

1.E-09 1.E-05 1.E-01

CD
F

Selectivity

 Databricks Censys

40% of customer Spark queries at Databricks select < 20% of data
99% of queries in Censys select < 0.001% of data

How can we exploit high selectivity to accelerate parsing?

Sparser: Filter Before You Parse

Raw DataFilter

Raw DataFilter

Raw DataFilter

Raw DataParse

Raw DataParse

Today:
parse full input à slow!

Sparser: Filter before parsing first
using fast filtering functions with false

positives, but no false negatives

Results: Accelerating End-to-End Spark Jobs

0

200

400

600

Disk Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9Ru
nt

im
e

(s
ec

on
ds

) Spark + Jackson Spark + Sparser Query Only

Censys queries on 652GB of JSON data: up to 4x
speedup by using Sparser.

My Approach: Building three systems to
leverage new interface properties

Name Interface/Properties System

Weld
IR to extract parallel
“structure” of library
functions

Compiler to enable data
movement optimization
+ parallelization

Split
annotations

Annotations to define
how to partition
function inputs

Runtime to pipeline data
among unmodified
library functions

Raw filtering Composable filters with
false positives

Library for accelerating
I/O of serialized data

New composition interfaces can improve
performance on modern hardware
•Weld used at NEC to support new vector accelerator,

prototyped at Databricks, used in several labs

•Ongoing work at Stanford for extending SAs to
bridge GPU and CPU libraries
• Teradata, Google have prototyped raw filtering

internally

Acknowledgements

Acknowledgements

Thank you to my committee members!

Keith
Winstein

Christos
Kozyrakis

Mendel
Rosenblum

John
Duchi

Acknowledgements

Thank you Matei for an
inspiring graduate career!

Acknowledgements
To FutureData, for great discussions, gossip, and friendships that I hope will
last forever

Cody, Daniel, Deepti, Edward, Fiodar, Kaisheng, Keshav, Kexin, Peter Bailis, Peter
Kraft, Pratiksha, Sahaana

To my office mates, for teaching me about sports, goofing off with me, and
tolerating four years of terrible jokes

Deepak, Firas, James

To other friends who supported me outside of lab
Akshay, Aubhro, Jeff, Neil, Rohit, Stephanie, Sagar, Sahil, Yuval

And of course, to my wife Paroma, whose unwavering support made grad
school one of the fondest times of my life, and the rest of my family: my

parents Anjali and Prasad, my sister Ishani, my aunt and uncle Trupti and
Sourja, and my two little cousins Shreya and Tvisha, all of who were

collectively responsible for keeping me smiling for the last 26 years J

Conclusion

Demonstrated with three interfaces/systems:
• Weld
• Split Annotations
• Raw filtering

Thesis: We can use algebraic properties of software
APIs in new interfaces to enable new optimizations

shoumik@cs.stanford.edu

